dlm-js
    Preparing search index...

    Interface DlmFitResult

    Result from the DLM fit function (dlmFit). Numeric arrays use TypedArrays (Float32Array or Float64Array based on dtype).

    interface DlmFitResult {
        C: FloatArray[][];
        C0: number[][];
        Cf: FloatArray[][];
        class: "dlmfit";
        Cp: FloatArray;
        F: number[];
        G: number[][];
        lik: number;
        mape: number;
        mse: number;
        nobs: number;
        resid: FloatArray;
        resid0: FloatArray;
        resid2: FloatArray;
        s2: number;
        ssy: number;
        v: FloatArray;
        V: FloatArray;
        W: number[][];
        x: FloatArray[];
        x0: number[];
        xf: FloatArray[];
        xstd: FloatArray[];
        XX: number[] | number[][];
        y: FloatArray;
        yhat: FloatArray;
        ystd: FloatArray;
    }

    Properties

    C: FloatArray[][]

    Smoothed covariances [row][col][time]

    C0: number[][]

    Initial state covariance (scaled)

    Cf: FloatArray[][]

    Filtered covariances [row][col][time]

    class: "dlmfit"

    Class identifier

    Innovation covariances

    F: number[]

    Observation vector F (1×m flattened)

    G: number[][]

    State transition matrix G (m×m)

    lik: number

    -2 * log likelihood

    mape: number

    Mean absolute percentage error

    mse: number

    Mean squared error

    nobs: number

    Number of observations

    resid: FloatArray

    Scaled residuals

    resid0: FloatArray

    Raw residuals

    resid2: FloatArray

    Standardized residuals

    s2: number

    Residual variance

    ssy: number

    Sum of squared residuals

    Innovations

    Observation noise standard deviations

    W: number[][]

    State noise covariance W (m×m)

    Smoothed state means [state_dim][time]

    x0: number[]

    Initial state mean (after first smoother pass)

    Filtered state means [state_dim][time]

    xstd: FloatArray[]

    Smoothed state standard deviations [time][state_dim]

    XX: number[] | number[][]

    Covariates matrix: XX[t] is the covariate row at time t (empty array when no covariates)

    Observations

    Filter predictions

    Prediction standard deviations